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The classical problem of radiation emitted by an accelerated charge in the relativistic case is considered.
Only accelerations which occur in a short time interval are taken into account. We first discuss the one
dimensional trajectories, for later extending the analysis to the two-dimensional case by means of a first-order
approximation. We find an expression for the allowed radiated frequencies and we discuss the inconvenience
of the concept of formation time of radiation. The results allow us to treat the case of successive collisions, in
order to study the behavior of the interference terms.
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I. INTRODUCTION

The classical problem of the radiation produced by an
accelerated charge in covariant formulation is vastly treated
in sources as �1,2�. These treatments are interesting not only
because they agree with the quantum-mechanical results in
the soft-photon limit, but also because they provide useful
information for understanding some radiation phenomena.

Nevertheless, the treatment of some of the simplest radia-
tion processes is not a closed subject, mainly because of
mathematical difficulties. In particular, the radiation emitted,
when a point charge collides in a known space-time coordi-
nate with fixed initial and final velocities, is frequently
treated in the non relativistic case as in �3� or in the one
dimensional relativistic case �4�, where the direction of the
velocity of the particle does not change during the collision,
but there is no specific information about the analysis in the
two-dimensional relativistic regime, which is the most gen-
eral case. The aim of this paper is precisely to obtain a
simple classical expression for the radiated energy in this
general case, where the direction of the initial and final ve-
locities of the particle can be different. It will be seen that
this expression provides a deeper insight in the form and
characteristics of the soft-photon radiation produced in single
and multiple collisions.

We know from the analysis of one dimensional trajecto-
ries that the small but finite time of the collision induces a
cutoff in the radiated frequencies. This cutoff and its depen-
dency on the angle of radiation is well known for the one-
dimensional �1D� case, but in the two-dimensional case,
mathematical difficulties arise and therefore the cutoff is fre-
quently treated as a constant �5�.

In this paper we find the explicit dependence of this cutoff
on the angle of radiation and the initial and final velocities of
the particle in two-dimensional case. In order to obtain these
results, we exploit the fact that the collision occurs in a very
short time interval and therefore a first-order approximation
in the proper time is well suited. This treatment allows us to
find a simple expression for the angular distribution of radi-
ated energy, and it gives us important information about the
interference terms in the case of successive collisions.

The analysis leads us to discuss the inconvenience of the
concept of formation length or formation time of radiation in
classical electrodynamics, because it could lead to confu-
sions.

II. CLASSICAL THEORY OF BREMSSTRAHLUNG

When a charged point particle undergoes an acceleration
in a short time interval, its stationary field is distorted and the
energy transferred in the collision process is radiated. After
the particle leaves the acceleration zone with constant veloc-
ity, it recovers its normal stationary field. It is possible to find
the spectral decomposition of the radiated energy by using
the Fourier transform of the current �5�, namely,

dE = −
j̃��k� j̃�

� �k�
2�2��3 d3k , �1�

where Heaviside-Lorentz units are been used with c=1, and
k= �� ,k� is a lightlike four-vector. In terms of the world line
x���, the Fourier transform of the current for a point charge is
given by

j̃��k� = e� d�
dx�

d�
exp�ik · x���� . �2�

The calculation of the Fourier transform needs information
of the current in infinity. But taking into account that the
radiation process takes place in a localized region in space-
time, the different border conditions in infinity should not
affect the calculation of the radiated energy.

In the case of an instantaneous acceleration in the origin
of the space-time coordinate system, we have

x���� = �v1
�� , � � 0

v2
�� , � � 0,

� �3�

where v1
�=cosh �1�1,v1� and v2

�=cosh �2�1,v2� are arbi-
trary initial and final four velocities with rapidities �1 and
�2. Then, the Fourier transform of the four current is given
by

j̃��k� = − ie� v1
�

k · v1
−

v2
�

k · v2
	 . �4�

If we use this expression for finding the total radiated energy
integrating Eq. �1�, we realize that this energy is infinite. This
divergence is due to the fact that an instantaneous change in
velocity is only produced by an infinite sudden acceleration,
which is of course an unrealistic model of the physical pro-
cess. This model is treated in detail in �5�.
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In order to avoid this divergence, we proceed directly to a
more realistic model, in which the particle changes its veloc-
ity gradually through a finite proper acceleration a0. The par-
ticle experiences this acceleration only for a short time inter-
val 	�
1 /a0 in a definite region of space-time, and the
radiation is as usual measured by a distant observer. The
interesting fact is that the results of this last model are tightly
related to the sudden acceleration model. In the one-
dimensional case, the corresponding four current of such a
trajectory is the same as the one given in Eq. �4�, with the
only difference that a cutoff in frequency is introduced ��4��,
given by ��a0 /sin���, where � is the angle between the
axis in which the particle moves and the wave vector k �in
the 1D case we have azimuthal symmetry�. This cutoff in
frequency may be interpreted by thinking that only the fast
components of the Fourier transform of the field can follow
the charge in its change in direction, but the slow compo-
nents are unable to remain attached to the particle and there-
fore they are radiated.

Following the conclusions of the one dimensional case, to
find the radiated energy in the two-dimensional case, the four
current of an instantaneously accelerated charge should be
used with a specific cutoff in frequency. This cutoff is a
mathematical consequence of the finite time interval in
which the acceleration is considerable, and can be explained
and found as follows. The inner product k ·x��� depends on
the polar angle �, the azimuthal angle 
, the angle � between
the vectors v1 and v2, and the proper time �. These three
angles will be denoted by the variable �= �� ,
 ,��. Then we
have

k · x��� = ��t��� − k̂ · x���� = �f��,�� . �5�

Now, let F��� ,� ,�� be the Fourier transform of the function
exp�i�f�� ,���. Then, it is possible to express the four current
given in Eq. �2� in terms of this Fourier transform and the
four acceleration using integration by parts, namely,

j̃��k� = ie�
−�

�

d��
F���,�,��

��
�

−�

�

d�
d2x�

d�2 exp�i���� . �6�

Notice that the boundary terms were discarded because they
do not contribute to the radiation produced by the accelera-
tion of the charge, as discussed previously. The last integral
is just the Fourier transform of the four acceleration. If we
consider that this acceleration is considerable only during a
time interval 	�, and that the acceleration is a smooth func-
tion, then its Fourier transform has frequency content only in

the range ���1 /	�. In this time interval we can approxi-
mate exp�i����
1. This assumptions yield

j̃��k� = ie�v2
� − v1

���
−�

�

d��
F���,�,��

��
, �� � 1/	� .

�7�

Besides, the first-order approximation of f�� ,��
=c1����+O��2� allows us to obtain an analytic expression
for the Fourier transform,

F���,�,�� = �„�� − �c1���… , �8�

therefore, we find that the four current and its cutoff in fre-
quency are given by

j̃��k� =
ie�v2

� − v1
��

�c1���
, �c1��� � 1/	� . �9�

Of these two approximations, we only need the approxima-
tion for the cutoff in frequency, because as noted, we will use
the four current for the instantaneously accelerated charge.
The first-order approximation for the four current can also be
used and the results are similar.

It is necessary to clarify the meaning of the coefficient
c1��� and the validity of the first-order approximation. By
comparing with Eq. �5� we find that

�c1��� = k · �dx���
d�

�
�=0

. �10�

The value of the four velocity evaluated in �=0 is meaning-
ful and unambiguous only if we consider that a first-order
approximation is equivalent to state that the particle moves
with a constant velocity in the collision process. This veloc-
ity can be taken to be the average velocity, simply given by

�dx����
d�

�
�=0

=
v1

� + v2
�

2
. �11�

As a consequence, the approximation is valid only if the
particle has four velocities similar to the average during the
collision process. This is not the case in the ultrarelativistic
case, where the initial and final four velocities can be very
different. Anyway, it should be noted that in this cases, the
approximation can always be made in a reference system
where the particle has lower velocities by using the fact that
the energy is a Lorentz invariant.

Now, by using Eqs. �9� and �10� we find the explicit ex-
pression for the cutoff,

� �
2

	��cosh��1� + cosh��2� − sinh��1�k̂ · v̂1 − sinh��2�k̂ · v̂2�
= ���,v1,v2� , �12�

where the particle initial and final rapidities �1 and �2 are
introduced by using the expressions for the Lorentz factors

��v1�=cosh �1, ��v2�=cosh �2. This expression indicates
the dependency of the cutoff on the initial and final rapidities
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and with the angle between the wave vector and the veloci-
ties. The spectral decomposition of the radiated energy is
simply

dE

d3k
=

e2

2�2��3� 2�v1 · v2�
�k · v1��k · v2�

−
1

�k · v1�2 −
1

�k · v2�2	 ,

�13�

where ���. In order to obtain the angular distribution of
radiated energy, we must perform the integration in �, which
is straightforward, yielding

dE

d�
=

e2���,v1,v2�
2�2��3 � 2�1 − v1 · v2�

�1 − k̂ · v1��1 − k̂ · v2�

−
1

cosh��1�2�1 − k̂ · v1�2
−

1

cosh��2�2�1 − k̂ · v2�2	 .

�14�

Note that if we invert the order of the velocities v1 and v2,
the radiated energy remains the same.

III. SUCCESSIVE ACCELERATIONS

If we have a second acceleration after a proper time
	T�	� as depicted in Fig. 1, we have two contributions to
the current, given by

g̃��k� = − ie� v1
�

k · v1
−

v2
�

k · v2
	 ,

h̃��k� = − ie� v2
�

k · v2
−

v3
�

k · v3
	exp�ik · v2	T� , �15�

where the cutoff in frequency for g̃� and h̃� are given by
���1��1 ,v1 ,v2� and ���2��2 ,v2 ,v3�, respectively. The to-

tal current is given by j̃��k�= g̃��k�+ h̃��k�. The radiated en-
ergy is easily obtained by means of Eq. �1�,

dE

d3k
=

dE1

d3k
+

dE2

d3k
− A

e2 cos����
�2��3�2 , �16�

where �=��v2��1− k̂ ·v2�	T and � is the Lorentz factor. The
first and second terms on the right are just the contribution to
the radiated energy given by the two accelerations separately.
Therefore, for these terms we must take into account the
cutoff function for the first and second collision, respectively,
given by the functions �1 and �2. The remaining term repre-
sents the interference of the radiation. For this term, we must

of course consider only frequencies under the minimum cut-
off function, ��min��1 ,�2�. The factor A is a function of the
velocities and the angles, given in Eq. �18�.

Integrating in �, we obtain the angular distribution of
radiated energy

dE

d�
=

dE1

d�
+

dE2

d�
− A

e2 min��1,�2�
�2��3 � sin�min��1,�2���

min��1,�2�� 	 .

�17�

A�v1,v2,v3,�,
� = � �1 − v1 · v2�

�1 − k̂ · v1��1 − k̂ · v2�

+
�1 − v2 · v3�

�1 − k̂ · v2��1 − k̂ · v3�

−
�1 − v1 · v3�

�1 − k̂ · v1��1 − k̂ · v3�
−

�1 − v2
2�

�1 − k̂ · v2�2	 .

�18�

These results allow us to obtain the following conclusions. If
the function A is greater than zero, then for 	T small, we
have destructive interference. That means that if the two ac-
celerations occur in a small region, or if the particle has a
large velocity, the radiated energy will be reduced because of
the interference term. On the contrary, if A�0, for 	T small
we have constructive interference.

It is not easy to see whether the function A is going to be
positive or negative. But from the Eq. �18� we can see that if
v1 �v3, v1�v2, and v2�v3 it is more likely that the function
A is going to be positive for the majority of the angles �, 
.
On the contrary, if v1�v3, it is more likely that the function
A is going to be negative. Trajectories with such character-
istics are depicted in Fig. 2.

It is interesting to analyze the case of a charge which is
initially at rest, then it is accelerated to a velocity v2 and
finally it is stopped again. Then, with v1=v3=0 it is easy to
see that for 	T small enough, we have destructive interfer-
ence, and for 	T→0 the radiated energy goes to zero. Usu-
ally this result is interpreted as follows. The electromagnetic
radiation has a characteristic “formation time,” which de-
pends on the frequency of the radiation. If the particle is
stopped after a time 	T, no radiation is emitted for the fre-
quencies which have a longer formation time than 	T. In
particular, if the particle is stopped right after it was acceler-
ated �	T→0�, no radiation is emitted at all. By looking at
the expression �16� we see that this interpretation is artificial
because the interference term has periodicity. Then, if we

FIG. 1. Simplified scheme of a double collision of the point
charge.

FIG. 2. Paradigm of double collisions with A�0 and A�0
respectively.
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allow bigger values for 	T, we will find a second minimum
for the radiated energy for a given frequency, despite the
formation time is already been satisfied. Moreover, as we
have already seen, the interference term is not always de-
structive for small 	T, its character depends on the initial
and final velocities, and on the direction of the radiated
waves.

Finally, it is worth discussing briefly the actual range of
velocities in which our first-order approximation is valid. If
one compares numerically the results of this approximation
with the formulas found in �4� in the one-dimensional case,
where no first-order approximation is been made, one can see
that they give the same results in a wide range of initial and
final velocities. It is necessary to go to the ultrarelativistic
case to find differences. It is not difficult to show that even in
cases of successive accelerations like the one proposed in the
last paragraph, the approximation is successful for the range
of velocities treated in the next section. We omit the numeri-
cal comparisons in order to keep brevity.

IV. EXAMPLES: RADIATION PATTERNS

A. Single acceleration

By using Eq. �14�, it is possible to plot the radiated en-
ergy, using spherical coordinates with dE

d� as radius. The re-
sults are depicted in Fig. 3, where the time of the collision is
taken as 	�=1. We can infer that with this value for 	� and
with the given values for the initial and final velocities, the
proper acceleration experienced by the particle is
a0
 
v2
−
v1


	� =0.1. The results indicate that for velocities
much smaller than the velocity of light, the radiated energy
concentrates in directions perpendicular to the vector
	v=v2−v1, as expected from the nonrelativistic analysis
�see �3��. For relativistic velocities, the radiation is mainly
emitted in the direction of the final velocity.

B. Successive accelerations

We consider the two cases given in Fig. 2. The radiated
energy is now given by Eq. �17�. The results for the first case
are given in Fig. 4, where in the plot on the left the time
between the collisions is small enough to observe interfer-

ence effects, and in the figure on the right this time is great
enough to make the interference effects unnoticeable. It is
easy to see by comparing the two plots, that in the case of
small 	T, destructive interference occurs, as expected. The
second case is shown in Fig. 5, where the two plots indicate
again the radiation pattern with and without interference.
This case is more interesting, because it is seen by compar-
ing the two plots that if the time between the collisions is
small, the interference term is constructive. It should be
noted anyway that in this analysis, the time between the col-
lisions must be much greater than the time that each collision
lasts.

V. CONCLUSIONS

By using a first-order approximation in the proper time,
an analytic expression for the radiation of a rapidly acceler-
ated charge is found. This formula is easily applicable to
successive accelerations. The model uses the formula of an
instantaneously accelerated charge, introducing a cutoff in
the radiated frequencies to take into account that the accel-
eration is finite. This cutoff is explicitly calculated as a func-
tion of the angle of radiation, and the initial and final veloci-
ties. It is found that the first-order approximation is well

(b)(a)

FIG. 3. Energy radiated by the charge. Left: 
v1
=0.2, 
v2
=0.1.
Right: 
v1
=0.8, 
v2
=0.7. �=� /6, 	�=1. The trajectory of the par-
ticle is indicated by the black line. The gray arrow indicates a vector
in the direction of v2−v1.

(b)(a)

FIG. 4. Energy radiated by the double collision. Left:
	T=0.2. Right: 	T=2. 
v1
=0.3, 
v2
=0.2, 
v3
=0.1 �1=� /2,
�2=0,	�1
	�2
0.1. The two collisions occur near the origin.
The black line indicates the incoming and outgoing trajectories of
the particle.

(b)(a)

FIG. 5. Energy radiated by the double collision. Left: 	T=0.2.
Right: 	T=2. 
v1
=0.3, 
v2
=0.2, 
v3
=0.1 �1=� /4, �2=� /2,	�1


	�2
0.1. The two collisions occur near the origin. The black
line indicates the incoming and outgoing trajectories of the particle.
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suited if the velocities of the particle in the process are simi-
lar to the average velocity.

When two successive accelerations are taken into account,
the interference term is calculated, and it is found that the
interference can be constructive even if the time between the
accelerations is short. The interference term has the form of
the function sinc�x�, and its sign depends on the angles and
the velocities of the particle. It is not easy to see whether the
interference is going to be constructive or destructive, but

some paradigmatic cases can be found where the character of
the interference is easy to predict.

In this analysis, it is shown that the total radiation in a
process of successive accelerations is readily explained by
means of the interference term, and that the concept of for-
mation time of radiation is unnecessary in classical electro-
dynamics. This is because the reduction in radiation in some
cases where the time between the collisions is short, is just a
special case of an interference pattern.
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